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SUMMARY

An experimental program has been carried out for the

measurement of the water surface contour due to a submerged hydro-

foil of finite span. Because of the hydrofoil downwash, the water sur-

face has a rather pronounced depression in the form of a long, narrow

trough which extends many chords aft the hydrofoil. When the trail-

irng vortex cores becomes sufficiently close to the water surface de-

pression, flash ventilation of the vortices and the entire upper sur-

face has been observed to occur abruptly.

The model used here was a hydrofoil with a NACA 16-206

section and a rectangular plan form, mounted on a NACA 16-006 strut.

The hydrofoil has a chord of 3 inches and an aspect-ratio of 1.33. It

has been found that the length and depth of the surface depression, aqd

the location of the trough bottom are well defined functioni; of the Froude

number and of the ratio of chord-to-submergence depoh. It has also

been observed that the distance between the trailing vortex core and

the lowest points of the depreasion is an important parameter in effect-

ing the onset of ventilating flow. This investigation covers a range of

flow velocity, angle of attack, depth of submergence, and the flap angle

deflection.
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N o rr-n c I a t u r e

h depth of submergence with resps~eL to leading edg- of the hydro-
foil (ft. )

d' maximum surface depression with respect to undisturbed sur-
face (ft. )

L lift force

I longitudinal or downstream distance from leading ecige (ft.)

w transverse distance from hydrofoil rrid-span (ft.)

c hydrofoil chord =0.25 ft.

V water veloeity (fps)

Fr V Frcude number based on chord

a angle of attack (deg)

C Lift coefficient



1. Introduction

In the development of hydr-foil systems operating near the free

water surface, it is important to determ -aine the effects of the free surfac;

on th.- basic characteristics of hydrofoil performance. Other than its

effects on the lift, wave drag, ,orment of force of a hydro)foil, the free

surface has an additional important effect on the change of the basic

flow configuration by the inception of cavitation and ventilation about the

hydrofoil. The formation of an air bubbie by ventilation at Zhe tips and

upper surface of a submerged Cat plate has been shown and discusoed

by Wadlin, Ra-nsen and Vaughan (I). It was reported that when the

flow velocity past a b-drofoil, held at hig.h angles of attack and submer-

ged at shallow depths, is sufficiently large, air was observed to enter

the trailing vor'tices from drownstream, Ax the speed was increased the

entrained air proceeded forward along a helical path inside the vortices

until it reached the model, causing the entire upper side to be venti-

lated.

Similar observations have been made at this Hydrodynamics

Laboratory using a .'ydrofoil with a NACA 16-206 satction and a rectangu-

lar plan form. A k6mrm motion picture (Ref. 2) presents some typical

observations and e.-perimental results, showing the effect of speed,

angle Gf attack, operating depth and flap angles on the ventilation char-

a cteriwtics.

These experimental observations showed that due to the hydro-

foil downwash, t', water suzface had a rather pronounced depression

in the form of a lung, narrow trough which extenCled many chords aft

the hydrofoil, but before the well known wave pattern would be estab-

lished further downstream. The results gave evidences that this water

surface depression was very important to the initiation of ventilation.

Apparently, this surface depress.on brings the free surface closer to the

trailing vortices which represent a low pressure region (compared with

Number in parenthesis indicate the references at the end of text.
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t':ae am'aier.t in the flow; hence air bubbles tend to migrate from the our -

face to the low pressure field ot the tip vortices. When the depth of sub-

mergence was sufficiently small, and theite vortex cores sufficiently

close to the surface depression, flash ventilation of the vortices and the

entire upper surface was observed to occur abruptly.

As was pointed out in Ref. .1) and later in (3), when the upper

surface becomes ventilated, the lift of the hydrofoil suddenly drops by

as much as 45 percent- This loss in lift and the large downstream dis-

turbances produced by the trailing cavities are the important reasons

for studyizg this phenomena from the standpoint of engineering ap. lica-

tion. The problem is also of interest in view of the determination of

the critical conditions for ventilation inception and its bearing on re-

lated free-boundary flows. Consequently, it was decided tc. explore in

a systematic manner the mechanism and conditions under which this

type of ventilation takes place.

The first part of these studies involved the determination of the

water surface contour behind a hydrofoil. Three important parameters

-- depth of submergence, velocity, angle of attack- -were considered in

this experimental program. Aspect ratio, though it can be important,

was kept fixed in this study. Measurements were made of the surface

contour, and in particular, the magnitude and location of the maximum

surface depression were recorded for several velocities, angles of

attack and foil depths.

2. LCprinentale

The hy& -4vi used in this experimental program was the NACA

16-206 section without flap. The chord of the hydrofoil was three inches

and the span four inches; hence the aspect ratio was 413. There was no

taper and the tips were square and parallel to each othe_-. The foil was

mounted at mid-span on a ten inch long strut which had a NACA 16-006

section profile and a chord of 2.25 inches. Table I shows the coordinates

of the strut and foil.

The model was tested in the Free-Surface Water Tunnel which
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has a test section 20 inches wide and eight feet long. The water depth

under normal operating conditions is about 20 inches. Although it was

recognized that the water surface contour could be a sensitive function

of channel depth, width, and velocity, the effect of changes in channel

geometry were not explored in these preliminary experiments. Figure 1

shows the apparatus used in this program. The model was supported

from an elevating mec'anism which permits the model to be positioned

vertically with a repeatability of 0.001 feet. The water surface contour

was determined with a depth gage which could be positioned at various

distances behind and to the side of the model. The longitudinal distance,

I, was measured from the leading edge of the hydrofoil and the trans-

verse distance, w, was measured from the centerline of the model. The

reference level of the surface was taken to be the water surface in the

absence of the model. This reference surface was determined with the

depth gage for each run with a different velocity, since the water sur-

face level is affected slightly by the tunnel speed. The reference depth

of the foil was determined during each run by lowering the model to the

water surface until the trailing edge just touch-d the water surface. A

correction of A h = c sina, where c denotes the chord and a the angle

of attack, was applied to account for the vertical distance between the

leading and trailing edges of the hydrofoil. Thus the reference ijouition

of the hydrofoil depth is taken to be the distance from the leiding edge

to the undisturbed water surface at all times.

The water surface contour was measured for the velocity V

equal to 10, 15, 20, and 24.5 feet per second, with angle of attack a

held at 2, 4, and 8 degrees, and depth-to-chord ratio set at 1.0, 0.5,

and 0.25. Figures 4 through 8 show the resulting contours to scale.

The maximum water surface depression d', was investigated further

for a large number of foil depths and also for -4 degrees angle of attack.

These results are shown in Figs. 9 and 10. Figure 11 shows the re-

lationship between water depth and Froude number and also the lift co-

efficient. This lift coefficient data was obtained from Ref. (3). which

presents the results of a test prcgram conducted with the present hydro-
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foil in the Free-Surface Water Tunnel.

3. Discussion of Results

The effect of foil submergence on the extent of the water sur-

face displacement is most significant. This effect is seen in the photo-

graphs of Pig: 3 and in the measured surface profiles of Fig. 4. This

latter figure is drawn to scale for a velocity of 15 fps and 80 angle of

attack. It shows how the water surface at the centerline gradually

slopes downward to a point which is about eiglt chords aft the leading

edge of the hydrofoil. At 15 fps, this is the observed position of the

maximum surface depression for all depths of submergence tested with

this hydrofoil model. Downstream of this locat:on the surface rises up

again and begins to form a "rooster tail" at the centerline. The graphs

of Figs. S and 6 give further information on the effect of angle of attack

and the Froude number on the surface contour. The transverse profiles

in Fig. 7 show how the rooster tail downstream of the hydrofoil deve-

lops. The growth of the rooster tail along the canterline is particular-

ly noticeable at a velocity of 10 fps and, as can lae seen, it rises above

;he undisturbed water level. This same phenomenon also occurred at

higher velocities, but it took place further downttream (at the entrance

of the tunnel diffuser) where it could not be mea;ured.

The effect of angle of attack on t.e water surface profile is

illustrated in Fig. 5. Again the maximum depth of the surface depres-

sion occurred eight chord lengths aft of the leading edge. Thus it

seems that the longitudinal locatioa of the maximum surface depression

depends only on the velocity or, rather, on the Froude number based

on chord. It is interesting to note also that the rooster tail formed

only at moderate and high angles of attack; for the angle of attack about

2 and 4 degrees, the water surface tended to smooth out very gradually

far downstream.

Figure 6 shows the effect of velocity or. the longitudinal sur-
0

"ace depression for an angle of attack of 8° . -t 24.5 feet per second

the depth of the water trough became tremenJous and extended very
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far downstream. For these same conditions the transverse profiles

are presented in Fig. 7. Note that the cross sections were taken at

regular intervals from the foil leading edge. The star indicates the

approximate location of maximum water depth, d'. Although the length

and depth of the surface depression increased with velocity, the width

of the trough at the surface as well as at its deepest point was smaller

for the high velocities. This is an important result from the stand-

point of incipient tip ventilation. As was discussed before, the ventila-

tion was always triggered from this trough, and proceeded forward to

the foil tips. When the low local pressure field in the tip vortices be-

comes so close to the water surface, a pasE-ge is formed for the air to

enter th4 vortex. Hence if the distance from these tip vortices to the

surface is sufficiently large, ventilation will not occur at all.

In order to determine the effect of model depth, and of angle of

attack on the surface depression depth d' in greater detail, a large num-

ber of readings of d' were taken at small intervals of foil depth. The

effect of the Froude number is shown in Fig. 9. The most interesting

result here is that the surface depression did not occur when hydrofoil

was right at the water surface, but rather when it was somewhat below

the surface. In fact, with an increase in the Fioude number, the sub-

mergence required for maximum surface depression increased also.

It should be noted here chat the reason for negative surface depression

is the fact that the foil depth was measured with respect to the foil lead-

ing edge. Hence for the negative values of h/c the hydrofoil was planing.

The dashed line in this Fig. 9 marks the points at which the tip

vortices began to ventilate. When the hydrofoil was raised from a deep

submergence toward the free surface, the ventilated tip vortices formed

at these points. The ventilation of the entire upper surface occurred

after the maximum value of d' had been reached. This state of ventila-

tion will be called superventilation. The hydrofoil depth at which this

superventilation was initiated varied from test to test somewhat and the

individual points are, therefore, not marked. There was a considerable

hysteresis effect on tip ventilation and superventilation. When the hydro-
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foil was lowered below the point of incipient ventilation, after having

established ventilation, the cavity would remain for many seconds un-
til all the air had finally entrained and disappeared downstream. In

the case of the ventilated tip vortices, the cavity would disappear down-
stream only when about 1.5 to 2 chords depth was reached. A more de-
tailed study of these effects will be made in the future. Figure 10 il-

lustrates the effect of angle of attack on the maximum depth of the sur-
face depression. It can be seen that the foil depth at which the maximum

value of d' was measured aii not change appreciably with positive angles

of attack. In the case of a = -4 ° the water surface was actually deflect-

ed upward. At values of h/c about 0.1 the lower surface of the hydro-
foil became ventilated and a relatively thin sheet of water was scooped
up by the upper surface. The large negative value of d' /c at small

foil submergences represents this sheet of water.

The dependence of the maximum surface depth for various sub-

mergence ratios is shown as a funtion of lift coefficient in Fig. 1 1 and
the Froude number in Fig. 12. It is of interest to note from Fig. 12
that the depth-chord ratio is nearly linearly proportional to the Froude

number. A theoretical analysis of this depression has been carried out
by D. K. Ai and T. Y. Wu, the numerical results of this work will be

presented in a future report. It is hoped that this work will explain the
salient features of these graphs.

4. Conclusions

From this preliminary experimer.tal study of the water surface

contour behind a submerged hydrofoil, the following general conclusions

can be made:

1) The surface depression is greatest along the centerline

at a distance downstream which is directly related to
the Froude number.

2) The maximum depression of the water surface is nearly
linearly dependent on lift coefficiert and Froude number.
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3) The maximum depth increases rapidly with a decrease

in foil submergence and attains a maximum value be-

tween depth-chord ratio of 0,1 and 0.4, depending on the

Fr oude numbe r.

As the hydrofoil approaches the water surface ventilated tip

vortices first appear, followed by superventilation when the foil is at

0.1 to 0.2 chords depth. These air entrainment problems will be studied

in more detail in the future. It would be of particular interest to deter-

mine the conditions for ventilation of the initial vortex and subsequent

superventilation, and the conditions under which the ventilated cavity

will disappear again.
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TABLE I

HYDROFOIL AND STRUT COORDINATES

NACA 16-206

NACA 16-006

NACA 16-206 NACA 16-006

HYDROFOI L STRUT

x x, Y, x Y YI

0. 0. 0. 0. 0.
0.0362 0.0225 0.0383 0.01611 0.0281 0.0145

0.0734 0.0326 0.0766 0.0215 0.0563 0.0203
0.1482 0.0467 0.1518 0.0286 0.1125 0.0282

0.2232 0.0582 0.2268 0.0327 0.1683 0.0341
0.2920 0.0674 0.3018 0.0363 0.2250 0.0389
0.4483 0.0822 0.4517 0.0418 0.3375 0.0465

03984 0.0938 0.6016 0.0461 0.4500 0.0535
0.8989 0.1104 0.9011 0.0521 0.6750 0.0610
1.1 94 0.1199 1.2006 0.0557 0.5000 0.0659
13000 0.1231 1.5000 0.0569 1.1250 0.0675
1.8006 0.1196 1.7994 0.0554 1.3500 0.0656
2.1010 0.1082 2.0990 0.0499 1.5750 0.0593
2.4014 0.0868 2.3986 0.0391 1.8000 0.0472

2.7013 0.0532 2.6587 0.0222 2.0250 0.0283
2.8510 0.0307 2.8499 0.0117 2.1375 0.0159
3.000 0. 3.0000 0. 2.2500 0.0014

L. E. RADIUS = 0.00176" L. E. RADIUS .00396

SLOPE OF RADIUS THROUGH L E. = .0824
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-~ n OEM- . . -+ ?+++_++ L+

Figure 1. Photograph showing strut-mounted hydrofoil in test
section of Free-Surface Water Tunnel. The tunnel
velocity is 20 ft. per sec. at an angle of attack of 8 -

and the submergence ratio (h/c) is 0.25. The follow-
ing legend identifies the objects in the photograph:
(1) Hydrofoil and strut system, (2) Strut support,
(3) Depth gage and traversing mechanism, (4) Velo-
city indicator.
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